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The problem concerning the convective stabllity of a nonstationary equilib-
rium of the fluid was solved previously [1}. In that paper the vertical tem-
perature gradient, which corresponds to nonstationary equilibrium, 1s modu-
lated periodically with certaln frequency and amplitude. As it was shown in
[1], the modulation of the parameter influences considerably the convective
stability. Under certain conditions this influence turns out to be stabili-
zing: the modulation of the temperature gradlent increases the stabillty of
equilibrium in comparison with the stationary case. A similar effect of the
parametric increase of stability was detected by experiment [2]. There was
observed the appearance of Taylor's instability of fluld motion between the
cylinders with the modulation of angular velocilty.

The present paper investigates the stability of the most simple nonsta-
tionary motion of the fluild which is the modulated rigid rotation., As 1t 1s
known (see [3-and 4]), the statlonary rotation of the fluld as a rigild body
1s stable with respect to the small perturbations for all the values of the
angular veloclty of rotation. The modulatlon of angular veloclty leads to
the appearance of unstable regions. The influenee of the modulatlon of the
parameter turns out to be destabllizing. '

1. Let us assume that the fluid fills completely the cavity which has
the shape of a body of revolution. The boundaries of the cavity rotate around
a fixed axls with angular velocity, which varles periodically with time

Q(t) = Q, + Q, sin wyt (1.1)

where 0, 1s the average angular veloclty of rotatlon, and Q, is the ampli-
tude of modulation., Let us consider the case of a slow modulation, when the

frquency w, 1s small, 1.e. w0, < v /L (1.2

Here y 1s the kinematlc viscosity, and 7 1s the characterlstlc dimen-
sion. In thils case the quasi-stationary approximation is valid: the fluld
will rotate as a rigid body with a uniform angular velocity {(1.1), equal to
the velocity of the boundaries. In a statlonary system of coordlnates the
veleclty of the fluid is vo = Q (t) xr (1.3)
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Let us consider small perturbations of & nonstationary rotation of the
fluid (1.3). In the system of coordinates, which rotates with the fluid with
angular velocity Q{¢), the equations of small perturbations have the form

%:—«._-%Vp+vAv—2(Q><v), divv =0 (1.4)

where ¥ and p are the perturbations of the velocity and of pressure, (In
the above equation the centrifugal force 1 X (r X 1) and the inertis foree,

caused by the nonuniform fotation X (I of the system of coordinates, drop
out on account of the equation for the unperturbed motion).

2. Let us consider at first an infinite layer of fluid, bounded by the
planes 2 = %+ 4 and rotating about the z~axis. Applying the operations curl
and curl curl to Equation (1.4) abd projecting the resulting equations on
the axis of rotation z , we obtaln a system of equations for the z=components
of the veloeity v, and for the curl of the velocity F = curl, v

oF 0v, _ 2 F _
S5 —2Q(t) 5= = vAF, 55 Av, +2Q (¢ -, = VAdu, 2.4

From the system (2.1) we can eliminate 7 and obtain an equation which
contains only v,. With the assumption (1.2) 1t reduces to the form

62uz
= (2.2)

Equation {2.2) admits a simple® exact solution in the case, when the velo-
city perturbations satisfy the conditions on the free boundaries given by

yz — Uz” ] pz-"” = 0 for z=th (2.3)
(the differentiation with respect to z 4s indicated by a prime), Let us

take
. cos[Ya{n+1)nz/hl(n=0,2,4,...)
v, = v () exp [i (kyz + kgy)]{sin et D bl et 85 @4

Substituting (2.4) into (2.2) we obtain

(& —vA) A, = =402 (9

v+ 2w +v e[+ CEEE o] o=0 (2.5)

2 = k2 + Kt -+ Y, (n + 1) n¥/R?

By choosing as a unit of time the magnitude l/bna, we can reduce Equation
{2.5) to the form

5+ 2 + [ + (T, + Tysin pyet)?] v = 0 2.6)
1
T = (i%,,i,Z—“ o, Ti= (%9,, Pa= 2.7)

Here p, 1s the nondimensional frequency modulation, 7, and 7T, are the
nondimensional parameters, which define the average angular velocity and the
amplitude of modulation; the corresponding Taylor numbers are equal to 1\’
and I1.°.
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Let us now conslder the two-d*mensional plane infinite layer with rigid
boundaries. In this case the boundary conditions are

v, = v, = F =0 for z=7%*h (28)
With these boundary conditions we can obtain an effective approximate solu-
tion by the Galerkin method. Let us assume (2'9)

v, = exp [i (kyx + k)l Z v () pi(2), F =expli (kg + k)] g fi(®) i)

1
where the functions p,(#) and g, (z) satisfy the boundary conditions

pi g l)i, e (11' == O [or Z mmm +h (2.10,

The functions v {z) and p,(¢) 1in (2.9) are the coefficlents of expan-
sion of v, a4 F in eigenfunctions. These coefficlents are determined
from the usual conditions of the Galerkin method. In this way we obtain a
system of first order differentlal equatlons for vl(t) and j,(t) with
periodic coefficlents.

The system (2.1) has solutions of "even" and "odd" type. The even func-
tion v,{z) and the odd function z(z) correspond to the even solution and
vice versa for the "odd" solution., There exists an infinite sequence of
solutions of each type. We wlll be interested only in the first scolutions of
these sequences (in the case of free boundaries the numbers n = 0,1 corres-
pond to these first solutions in Equation (2.4)).

Let us examine the "even" solution. Leaving in the first approximation
only one of the terms in the summations (2.9), we select for the functions
plz) and g{z) polynomials, which satisfy the conditions (2.10} and an
additional condition ¢”{xk) = O , which follows from Equation (2.1)

p2) =01 —=5)2 ¢ =L1—=07 (@730 &=z/h 2.1)
The Galerkin conditions lead to the system of equations for v{t) and
7{z) . Eliminating from it z{(¢) we obtain (2.12)
20"+ 1A (T + Tysin pet)?l v=10

The unit of time is chosen as C%g , where

2

(= i =

and the following notations are introduced

p o (B-F K (994 108 9g o LEP
, T 563 - 12k + 2k%) ° = VP
/ 3 [ ﬁlj T S | z}ﬂA 3 33 1,
) : Tl,z = Buxl (3 T k2> Q1.2

Fig <1 " 1"
In order to find the first "odd solution

we choose the polynomials
pa=00-—0F) g8 =1-0)6-—-10 (2.13)
The Galerkin method leads agaln to the equation of the type {2.12),where

we have now
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o 153462k (1531626 (11 + kY _ 4 1" "
7GR VP i T 31 (495 - 44k3 - 2k8) L,2 7 52 N1+ &y +k1)] 1,2

Equation (2.12) differs from (2.6) only in the value of the damping coef-
ficient ¢ . In the case of the free boundaries ¢ =1 ; 4in the case of
rigid boundaries € ;>'f and the equation depends on the wave number ¥ .

In this way, the investigation of the limits of ctabllity reduces to the
determination of the conditlons of existence of the perlodic solutions of
Equation (2.12)-

3. Let us consider the uniform rotation without modulation (T,= 0) .
Then the behavilor of the perturbations is determined by the equation with
constant coefflclents, for which exist particular solutions of the type e'lﬁ
where S - 14+ P (1 — P)? Y

- T T2 = - _—T2> 3.1)
Ai‘. s:tVE 1 ZVP __k 4P 1 (

From this it follows, that always Re Ay >> 0, i.e. the perturbations

damp out for 8ll the values of T,. If T, < T,,, where

Tpu? = Yy P (1 — Py,

then both decrements are real, i1.e. the perturbations damp out monotonously,
and for 71 = T4 both decrements coincide: A,= A. . For Iry>T, the
decrements A, and \_ become complex conjugate: the perturbations damp out,
oscillating with the frequency —+ (72 — Ty.0)"% .

In FPig.l are represented, as an illustration, four lower decrements for
k = 2 which depend on T, . The curves 1 and 2 correspond to the even and
odd solutions, respectively. For 7T,~ O the values of the decrements do
not differ practically from the exact values, which in this case are easily
determined. In the case of free boundaries ¢ =1 andfu, = Oli.e. the per-
turbations have already an oscillatory character for an arbitrarlly small
veloclity of rotation (because in the case of free boundaries the spectrum of
decrements 1\, for T,= O turns out to be degenerate).

4, During the construction of the stable regions of Equation (2.12), in
the same way a8 in [1], we shall replace the sinusoidal modulation by a rec-
tangular one, 1.e, 1ns%ead of the modilating function sin p,t we shall
consider a periodic function, which takes constant values i 1 every half-
period. Then we can write the general solution of Equation (2.12) for every
half-perlod. The conditions of continuity and periodicity of the function
and its derivative determine a nontrivial periodic solution (2.12), if
between the parameters of the equation 1s satisfied the following relation

SOV RIS IV T S .
cos foos L — Hpgsin Sn = kR (pR)
a = V'1 =& - (T1 1 T2 3 = V1 et = (1) — Tan

The relation (4,1) allows, for example, for fixéd values of the average
velocity of rotation and the wave number (1.e. for fixed T, and ¢ ) to
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find the region of stable and unstable valules of the amplitude and the fre-
quency of modulation 7, and p . Equation (4.1) defines the boundaries of
these regions (it 1s convenient to conslder these regions on the coordinate
plane }/7i; p~l; the sign "plus” and "minus" on thé right-hand side of (4,1)
correspond to the integer and "half-integer” periodlc solutions).

Let us consider the unstable reglons for ¢ = 1 . In this case there
exists a threshold value of the average velocity of rotation. If 7,< #m,
then the rotation is stable for all the frequencles and amplitudes of modu-
lation. The unstable reglons appear for I,> #m (as an example, in Fig.2
are represented these regilons for T, = 6; the shaded regions are uns%able).
With the increaslng value of T, (i.e. the average velocity of rotation )
the number of unstable regions increases. These regions are oriented in the
direction of the asymptotlc lines

2T,/p = mn (m=1,23..) (4.2)

(for all odd values of m corresponds the "minus" sign in (4.1), and vice
versa for the even values of m ). Every region is engendered for a deft-
nite threshold value of T, as a point on the plane (7,,P) .

For the threshold value T,= #nm the region m= 1 1s engendered (the
extreme one to the left in Fig.2); the coordinates of the points of engen-
dration are: 1/p =0, T,== .

Let us glve also the threshold values of T, and the coordinates of the
points of engendration of the two followlng unstable regions

m=2 {T1=2.7,1/p = 0.70, T3 = 4.2}
m=23 {T1 =3.6; 1/p = 097, T2 = 4.3}

For big values of m the new unstable reglons appear for T, = T, ; the
threshold parameters are determined by the relatlons

2
cosh % = @2m —1)7, Ty =peow® (4.3)

In this way, for big values

of T, there exlists an unstable

7,=6, €=l strip, which consists of alter-
nating regions. The resonance

value of the amplitude T,= T,.
222225 The low=-frequency boundary of the
4? unstable strip is determined by

the relations (4.3), from which
we see, that the maximum value of
- ﬁ 1/P increases monotonously with
0 25 10 15 the increase of T, ; l.e. for a
Fig. 2 fast rotation the parametric
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instabllity can be aroused by the low-freguency modulations. There exists
an absolute threshold for the amplitude: for T,< in the rotatiof 1s sta-
ble for all values of 7T, .

Beslides the indicated unstable reglons which form the basic strip, there
exist also narrow reglons, lying on the same asymptotic lines (4.2) but cop=
responding to the larger vaiues of the amplitude T, . These reglons appesar
for larger values of T, , then the corresponding reglons of the lower strip.
The number of these reglons increases with m . One of these regions (m=3)
is shown in Fig.2,

The increase of the friction parameter ¢ 1leads, as it must be expected,
to the increase of stability. The unstable regions are displaced in the
direction of the larger amplitudes 7T, ; the appearance of the new unstable
reglons occurs for larger values of T, . Let us give the formulas for the
threshold value of the parameter T, and for the resonance value of the amp-
iitude 7, , which determines the positlion of the basic unstable strip

T, = Yyn Ve 4o 2072 (g — 1), T,=T,+Ve =1 (4.4)

The discussed singularities of the unstable spectrum, apparently, are
conserved alsc in the case of & sinusoidal modulation. The unstable regions
in this case can be found by the Fourler method. For the first region (m=1)
of parameterlc resonance we have

v = A, sin Yyp,t + By cos apyt + Agsin /oDyt + Bz cos 3/yp.t 4 ... (4.5)

Limiting ourselves to the baslic harmonic frequency %p, , we obtain for
the boundary of the region the following equationt

T2 =1y p? —24V2p2 (T} — 2¢%) — 4T, — 81" (4.6)

From (4.6) we find the threshold value 7,= ¢/2 ., Henece for ¢ = 1 we
obtain 7, = /2 , instead of 7= #7 in the case of rectangular modulation.

5.+ The method of computation, applied in Section 2 to the two~Jdimensional
plane layer with rigld boundaries, can be used for the investigation of the
parametric perturbation of the rigid rotation in the cavities of the other
shapes. The first approximations of the Galerkin method lead to Equation
(2.12) with the corresponding values of the parameters. Let us glve the
results of calculation for & cylinder and a thin cylindrical layer, rotating
with respect to an axis {the thin cylindrical layer, apparently, is more
interesting from the experimental point of view).

Consldering the perturbations axially-symmertical and depending on the
coordinate z according to the law eii¥, we obtain for the components v, of
the veloclty and for the components vq3 of the perturbation the following

equations:
Do, + 2Q (1) ky® vy = vD%, <D~ #2100

3.
+w_____.1._,wk1'l) GRY)
2 + 20 (1) v, = vDo,

(5.2)

T o r or r
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\r » o®© and z are the cylindrical coordinates).

’

On the rigid boundary ¥r = ¥ = 0, = 0, During approximation 1t is
useful to take into account an additional condition l)v@:Z 0, which follows
from (5.2).

In the case of a cylinder of radius # the velocities are approximated
in the following way:

=0 LA =0) v=fO0—-80)Q2—-0) &=r/R) (53

For the function v(t) we obtain Equation (2.12) with the parameters
given by

%2:440—!—316 ok = klR
3MR2Y P 28k
33 L 2k%) (440 +-318%) T, 5= L B
p=- e e R A G GRS

Let us consider also a thin cylindrical layer of thickness 2x = }'72—- &, ; the
inner and outer radii R, and R, are close to each other, h<< R, In
the operator D , contained in {5.1) and (5.2), we can neglect the curvature

D=5 Lk
Let us introduce a nondimensional coordinate ( , measured from the mid-
dle of the layer C= N 1/2 (Rl + R2)]
and let us approximate the components of the velocity (the even perturbation)
v=v() 1 — )P l=fOA—-)O— (5.4)

In this case the parameters of Equation (2.12) are defined by Formulas

by Formulas

0 2 Ok2 11kQ 2 —
o 153462 5 (34 k) (153 + 62%) T1,2:‘T_m’ k.
62h2 VP ' 31 (63 - 12Kk2 -+ 2k?) -vi? [31 (3 4 k)
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