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The problem concerning the convective stability of a nonstationary equilib- 
rium of the fluid was solved previously [l]. In that paper the vertical tem- 
perature gradient, which corresponds to nonstationary equilibrium, is modu- 
lated periodically with certain frequency and amplitude. As it was shown in 
[1], the modulation of the parameter influences considerably the convective 
stability. Under certain conditions this influence turns out to be stablli- 
zing : the modulation of the temperature gradient Increases the stability of 
equilibrium In comparison with the stationary case. A similar effect of the 
parametric Increase of stability was detected by experiment [2]. There was 
observed the appearance of Taylor’s instability of fluid motion between the 
cylinders with the modulation of angular velocity. 

The oresent oaoer investigates the stability of the most simple nonsta- 
tionary-motion of-the fluid which is the modulated rig%d rotation. As It Is 
known (see [j.and 4]), the stationary rotation of the fluid as a rigid body 
Is stable with respect to the small perturbations for all the values of the 
angular velocity of rotation. The modulation of angular velocity leads to 
the appearance of unstable regions. The inqluence of the modulation of the 
parameter turns out to be destabilizing. 

1. Let us assume that the fluid fills completely the cavity which has 

the shape of a body of revolution. The boundaries of the cavity rotate around 

a fixed axis w&th angular velocity, which varies periodically with time 

Q (t) = Q2, + Qe sin oat (1.1) 

where n, Is the average angular velocity of rotation, and G, is the ampli- 

tude of modulation. Let us consider the case of a slow modulation, when the 

frquency w0 Is small, i.e. 
o()<v IL2 (1.2j 

Here v is the kinematic viscosity, and L Is the characteristic dlmen- 

sion. In this case the quasi-stationary approximation Is valid: the fluid 

will rotate as a rigid body with a uniform angular velocity (1.11, equal to 

the velocity of the boundaries. In a stationary system of coordinates the 

velocity of the fluid is V0 = 9 (t) Xr (1.3) 
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Let us consider small perturbations of a nonstationary rotation of the 

fluid (1.3). In the system of coordinates, which rotates with the fluid with 

angular velocity n(t), the equations of small perturbations have the form 

Lh 

at= 
+I + vAv - 2 (!JXv), div v = 0 (1.4) 

where V and p are the perturbations of the velocity and of pressure. (In 

the above equation the centrifugal force fl X (I? X fi) and the inertia force, 
caused by the nonuniform fotation r x n of the system of coordinates, drop 
out on account of the equation for the unperturbed motion). 

2, Let us consider at first an infinite layer of fluid, bounded by the 

planes z = f h and rotating about the s-axis. Applying the operations curl 
and curl curl to Equation (1.4) abd projecting the resulting equations on 

the axis of rotation 2 , we obtain a system of equations for the s-components 

of the velocity U, and for the curl of the velocity F = curl,v 

dF 
--225;!(t)%=vAF, at -& Au, + 2Q (t)g = vAAv, Gw 

Prom the system (2.1) we can eliminate F and obtain an eqUation which 

contains only v, . With the assumption (1.2) it reduces to the form 

( a a%, -- 
at VA 

1 
a Avz = z- 4Q= (t) 

‘-XT (2.2) 
Equation (2.2) admits a sd.mplPexact solution in the case, when the velo- 

city perturbations satisfy the conditions on the free boundaries given by 

v, z v,” = 2)*11# = 0 for z=.rth (2.3) 

(the differentiation with respect to .s is indicated by a prime). Let us 

take 

Substituting (2.4) into (2.2) we obtain 

(2.5) 

,$ = k,* + ka2 + V4 (n + 1)2 n2/h” 
By choosing as a unit of time the magnitude l/wca, we can reduce Equation 

(2.5) to the form 

o** + 2v’ + fl + (T, + T, sin p*G2j V = 0 (2-Q 

T1 = @ + *) n Ql 
t&h ’ 

T 
2 

=p+ *In Q2 
vxah ’ 

(2.7) 

Here p+ is the nondimensional frequency modulation, Tt and T, are the 

nond~e~~o~l parameters, which define the average angular velocity and the 

amplitude of modulation; the corresponding Taylor numbers are equal to T,’ 

and r,= . 
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Let us now consider the two-d!.menslonal plane infinite layer with rigid 
boundaries. In this case the boundary conditions are 

2? z = c,I --L I; -_ 0 for z=-t-h (a.8) 

With these boundary condltjans we can obtain an effective approximate solu- 

tion by the Galerkln method. Let us assume (2.9) 

l?, z exp [i (kls i_ tczvfr jJ 77i (t) pi (z), F = exp ii V+ + x-eY)1 T fi @f Mz) 

where the functions p,‘(b)’ and a,(z) satisfy the boundary conditions 

pi Z pi’ = f& Z 0 [or z = + h (2. IO) 

The functions vi(t) and f,(t) in (2.9) are the coefficients of expan- 

sion of 0, a- P F in eigenfunctions. These coefficients are determined 

from the usual conditions of the Galerkin method. In this way we obtain a 

system of first order differential equations for u,(t) and r,(t) with 

periodic coefficients. 

The system (2.1) has solutions of “even” and wodd” type. The even func- 

tion U,(Z) and the odd function _P(=) correspond to the even sol&Ion and 

vice versa for the “odd” solution, There exists an infinite sequence of 

solutions of each type. We will be interested only In the first solutions of 

these sequences (in the case of free boundaries the numbers n. = 0,l corres- 

pond to these first solutions in Equation (2.4)). 

Let us examine the “even” solution, Leaving In the first approximation 

only one of the terms in the summations (2.9), we select for the functions 

~(8) and g(g) polynomials, which satisfy the conditions (2.10) and an 

additional condition q” (ih) = 0 , which follows from Equation (2.1) 

p (2) ::-: (1 - j?)?, q (2) = 5 (4 - 5’) (5 - 35’) (5 = z/h) (2.11) 

The Galerkin conditions lead to the system of equations for u(t) and 

J+(t) I Eliminating from it f(t) we obtain (2.12) 

2 Reh 
*.*a 

~~~ 

+ REV’ -F_ [1 + (T, + T, sin pet)‘1 2, = 0 

2 The unit of time is chosen as --& , where 

i 
(%’ = 99 -t_ iOk? 

1 1%” y-P ’ 
Jc2 = (Jcp -{- k.,2) #v) 

and the following notations are introduced 

p = (3 4 k2) (99 + lG@) i+p 
5 (63 ;- 12k2 + 2/c*) ’ 

C& _ 

I. T VP 
r a.5 r.0’ 3 33 

TX,, = w ~ 
i j 3 + k” 1:2 s2,,e 

Fig. 1 
In order to find the first “odd” solution 

we choose the polynomials 

p (z) = 5 (1 - 5”)“, q (2) = (1 - 51) (5 - 52) (2.13) 

The Galerkin method leads again to the equation of the type (2.12),where 

we have now 



x2 = 153 + 62kz p _ (153 -t- 6X?) (11 + P) 
T,,z = v$ ” 

fZhzJ/p ’ - 31 (495 + 44ka + WJ ’ 31 (11 + k’) I 
‘lJr Q,,2 

Equation (2.12j differs from (2.6) only in the value of the damping coef- 

ficient c . In the case of the free boundaries t = 1 ; In the case of 

rigid boundaries E a.1 and the equation depends on the wave number k . 

In this way, the investigation of the limits of ctablllty reduces to the 

determlnatlon of the conditions of existence of the periodic solutions of 

Equation (2.12)- 

3. Let us consider the uniform rotation without modulation (T,= 0) . 
Then the behavior of the perturbations is determined by the equation with 

constant coefficients, for which exist particular solutions of the type e-At, 

From this it follows, that always Re h, > 0, I.e. the perturbations 

damp out for all the values of T, . If T, < T1*, where 

T,,2 = V4 P-’ (1 - P)‘, 

then both decrements are real, 1.a. the perturbations damp out monotonously, 

and for T, = T i* both decrements coincide: A+= A_ . For .T, > T,, the 

decrements A, and A_ become complex conjugate: the perturbations damp out, 

oscillating with the frequency _+ (T,” - T1S2)“r . 

In Fig.1 are represented, as an illustration, four lower decrements for 

k = 2 which depend on T, . The curves 1 and 2 correspond to the even and 

odd solutions, respectively. For T, = 0 the values of the decrements do 

not differ practically from the exact values, which in this case are easily 

determined. In the case of free boundaries E = 1 andT1, = O,,i.e. the per- 

turbations have already an oscillatory character for an arbitrarily small 

velocity of rotation (because in the case of free boundaries the spectrum of 

decrements h+ for T, = 0 turns out to be degenerate). 

4. During the construction of the stable regions of Equation (2.12), in 

the same way as In [l], we shall replace the sinusoidal modulation by a rec- 

tangular one, i.e. instead of the modllatlng function sin Pet we shall 

consider a periodic function, which takes constant values f 1 every half- 

period. Then we can write the general solution of Equation (2.12) for every 

half-period. The conditions of continuity and perlodlclty of the function 

and its derivative determine a nontrivial periodic solution (2.12), if 

between the parameters of the equation is satisfied the following relation 

The relation (4.1) allows, for example, for flx6d values of the average 

velocity of rotation and the wsve number (I.e. for fixed T, and c ) to 



1014 0.2. Oershunl and E.M. Zhukhovltskli 

find the region of stable and unstable values of the amplitude and the fre- 

quency of modulation Tna and p . Equation (4.1) defines the boundaries of 

these regions (it is convenient to consider these regions on the coordinate 

plane I/E, p-l; the sign “plus” and “minus” on the right-hand side of (4.1) 

correspond to the Integer and “half-integer” periodic solutions). 

Let us consider the unstable regions for c = 1 . In this case there 

exists a threshold value of the average velocity of rotation. If T,< %n, 

then the rotation Is stable for all the frequencies and amplitudes of modu- 

lation. The unstable regions appear for T,> +n (as an example, in Fig.2 

are represented these regions for T1’ 6; the shaded regions are unstable). 

With the Increasing value of T, (i.e. the average velocity of rotation ) 
the number of unstable regions increases. These regions are oriented in the 

direction of the asymptotic lines 

2TJp = mn (m 51) 2, 3.. .) (4.2) 

(for all odd values of m corresponds the “minus” sign In (4.1), and vice 

versa for the even values of m ). Every region is engendered for a defi- 

nite threshold value of T1 as a point on the plane (T,,P) . 

For the threshold value T1= &T the region m= 1 is engendered (the 

extreme one to the left in Flg.2); the coordinates of the points of engen- 

dratlon are: l/p = 0 , T,= m . 

Let us give also the threshold values of T, and the coordinates of the 

points of engendration of the two following unstable regions 

m = 2 (T1 = 2.7, l/p = 0.70, Tz = 4.2) 

m = 3 {Tl = 3.6; l/p = 0.97, Tz = 4.5) 

For big values of m the new unstable regions appear for T’, z T, ; the 

threshold parameters are determined by the relations 

d i = (2m - 1) 2, T1 =pcolh; (4.3) 

Fig. 2 

In this way, for big values 

of T1 there exists an unstable 

strip, which consists of alter- 

nating regions. The resonance 

value of the amplitude Ta= T, . 

!Che low-frequency boundary of the 

unstable strip is determined by 

the relations (4.3), from which 

we see,that the maximum value of 

l/P Increases monotonously with 

the increase of Tl ; i.e. for a 

fast rotation the parametric 



instabtlity can be aroused by the low-freguency modulations. There exists 

an absolute threshold for the amplitude: for Ta< &T the rotatibf’ is sta- 

ble for al1 values of T, . 

Besides the indicnted unstable regions which form the basic strip, there 

exist also narrow regions, lying on the same asymptotic lines (4.2) but cor- 

responding to the Larger values of the amplitude T, . These feglons appear 

for larger values of T, , then the corresponding regions of the lower strip, 

The number of these regions increases with m . One of these regions (m=3) 

is shown in Fig.2. 

The increase of the friction parameter E leads, as it must be expected, 

to the increase of stability. The unstable regions are displaced in the 

direction of the larger amplitudes T, ; the appearance of the new unstable 

regions occurs for larger values of TI . Let us give the formulas for the 

threshold value of the parameter Ti and for the resanance value of.the amp- 

lltude Tz , which determines the position of the basic unstable strip 

T, = V3 n; j&” + 2rr2 (e2 - I), T, = T, + jfs2 - 1 (4.4) 

The discussed singularities of the unstable spectrum, apparently, are 

conserved also in the case of a sinusoidal modulation. The unstable regions 

in this case can be found by the Fourier method. For the first region (m-If 

of parameter10 resonance we have 

Limiting ourselves to the basic harmonic frequency QI f we obtain for 

the boundary of the region the followfng equation: 

Tt2 = ‘la P*' _ 2 -+- J/-2p** (T,z - 2E2) - 4T,’ - 8T, (4.6) -_ 

From (4.6) we t%xl the threshold value Y,= s,?2 , Hence for G = 1 we 

obtain T, = J2 , instead of T*= $T in the ease of rectangular modulation. 

5. The method of computation, applied In Section 2 to the two-.Iiimensional 

plane layer with rigid boundarles, can be used for the investigation of the 

parametric perturbation of the rigid rotation in the cavities of the other 

shapeq. ‘The first approximations of the Galerkin method lead to Equation 

(2.12) with the corresponding values of the parameters. Let us give the 

results of calculation for s cylinder and a thin cylindrical layer, rotating 

with respect to an axis (the thin cylllndrlcal layer, apparently, is more 

interesting from the experimental point of view), 

Considering the perturbations axially-symmertical and depending on the 

coordinate a according to the law eikiz, we obtain for the components v, of 
the velocity and for the components 

vV 
of the perturbation the following 

equations : 

Dv; + 2Q (t) kle v, = vD=v, 
( 
D=-$++$+-h’) (5.1) 

?I,’ + 251 (t) v, = VD Z’, (5.2) 
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\T- , cp and z are the cylindrical coordinates). 

On the rigid boundary v, = v,’ = v, = 0. During approximation it is 
useful to take Into account an additional condition Dv,=O, which follows 

from (5.2). 

In the case of a cylinder of radius 19 the velocities are approximated 
in the following way: 

v, = 2, (t) 5 (1 - C2j2, v, = f (t) (1 -. 5”) (25 - C3) (5 = r/R) (5.3) 
For the function v(t) we obtain Equation (2.12) with the parameters 

given by 
x2 = 440 + 31k2 

3lR2 1/P 
-k = k,R 

p = (33 + 2k2) (440 + 3lW T,,, = 
38kS2, a 

62 (396 $ 33k2 + k*) YX~ [I86 (33 + 2k’)f” 

Let us ccntier also a thin cylindrical layer of thickness 2h = k,-- 
Inner and outer radii A, and Rz are close to each other, h(c 
the operator D , contained in (5.1) and (5.2), we can neglect the 

Let us Introduce a nondimensional coordinate 6 , measured from the mld- 

; the 

2,. In 

curvature 

dle of the layer 
5 = h-1 [r - l/2 (R, + R,)l 

and let us approximate the components of the velocity (the even perturbation) 

by Formulas 
v, = 2r (t) (1 - pj2, 7& = f (t) (1 - 5’) (5 - 5”) (5.4) 

In this case the parameters of Equation (2.12) are defined by Formulas 

X2 = 153 + 62k? p= (3+k2)(153+62kT) , T Ilk!&,z k = k& 
62h2 VF ’ 31 (63 + 12k2 + 2k4) 

‘j2 = _,$ 131 (3 + kz)f/z 
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